IGN INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Accuracy estimation and optimization of UAV photogrammetric 3D models

E Rupnik, M Pierrot Deseilligny

LaSTIG, IGN

CA16219 Meeting : UAS Techniques for Environmental Monitoring

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN

Hardware Algorithms

UAV-photogrammetry pipeline

Quality Analysis

- 1. What do we want to evaluate?:
 - only the 3D model
 - orientations
 - intermediary parameters (e.g., internal parameters)

Quality Analysis

- 1. What do we want to evaluate?:
 - only the 3D model
 - orientations
 - intermediary parameters (e.g., internal parameters)
- 2. What Ground Truth is at disposal (i.e., dense)?

Quality Analysis

- 1. What do we want to evaluate?:
 - only the 3D model
 - orientations
 - intermediary parameters (e.g., internal parameters)
- 2. What Ground Truth is at disposal (i.e., dense)?
- 3. What metric to use?

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation

Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN Hardware Algorithms

Relative orientation quality estimation

Classical measures:

- tie-points reprojection error (BBA σ)
- % of tie-points retained during BBA

Relative orientation quality estimation

Classical measures:

- tie-points reprojection error (BBA σ)
- % of tie-points retained during BBA

Disadvantage

- combines 2 error types
 - measurement error (white noise, not an issue)
 - camera modelling error (systematic, can generate bias)

Relative orientation quality estimation

An alternative measure (also in MicMac):

 dense matching in 2 directions, i.e., epipolar and transverse (y-parallax)

Figure: Y-parallax with high systematism.

Figure: Y-parallax with low systematism. Feb2019

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN Hardware Algorithms

Use Ground Control Points to evaluate accuracy

Figure: Accuracy measure - distances between 3D position predicted by photogrammetry and its *true* position.

- 1. There is many more degrees of freedom (at least 6 per image) than there is constraints
- 2. if σ_{GCP} and σ_{Im} are set to low values, the system will *learn by heart* on the training set with risk of severe extrapolation outside the set.

- 1. There is many more degrees of freedom (at least 6 per image) than there is constraints
- 2. if σ_{GCP} and σ_{Im} are set to low values, the system will *learn by heart* on the training set with risk of severe extrapolation outside the set.

- 1. There is many more degrees of freedom (at least 6 per image) than there is constraints
- 2. if σ_{GCP} and σ_{Im} are set to low values, the system will *learn by heart* on the training set with risk of severe extrapolation outside the set.

Good practice, do not

- use all GCPs in the BBA
- evaluate the accuracy on the GCPs participating in the BBA

Rules-of-thumb for evaluating accuracy given σ_{GCP} and σ_{Im} :

Rules-of-thumb for evaluating accuracy given σ_{GCP} and σ_{Im} :

 with many points: Split the points into two separate groups, e.g., if 20 points available, use 10 as GCPs and the other 10 as CPs (Check Point)

Rules-of-thumb for evaluating accuracy given σ_{GCP} and σ_{Im} :

- with many points: Split the points into two separate groups, e.g., if 20 points available, use 10 as GCPs and the other 10 as CPs (Check Point)
- 2. with few points, e.g., 6: Perform 6 independent computations where at each instance a GCP is alternatively removed and used as CP. Calculate final accuracy as an average of all 6 results.

Rules-of-thumb for evaluating accuracy given σ_{GCP} and σ_{Im} :

- with many points: Split the points into two separate groups, e.g., if 20 points available, use 10 as GCPs and the other 10 as CPs (Check Point)
- 2. with few points, e.g., 6: Perform 6 independent computations where at each instance a GCP is alternatively removed and used as CP. Calculate final accuracy as an average of all 6 results.
- 3. with minimum no of points, e.g., 4: perform a Helmert transformation and estimate the accuracy empirically taking into account the degree of freedom; e.g. if $\sigma = 3cm$ then $\sigma_{emp} = \sigma \cdot \frac{12}{5} = 7.2cm$

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth

W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN Hardware Algorithms

Two very different DSMs?

Feb2019

Figure: DSM1, EuroSDR benchmark

Two very different DSMs?

IGN

Figure: DSM2, EuroSDR benchmark

Two very different DSMs?

Figure: Δh of DSM1 and DSM2 wrt a GFobilitd⁹Truth

Even more complicated, what do we evaluate?

Figure: Photogrammetry in forestry applications.

► The errors should be separated into:

► The errors should be separated into:

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN Hardware Algorithms

▶ Visual inspection. Yes but not on the coloured pointcloud!

Visual inspection. A depth map?

Visual inspection. A depth map? No!

Figure: Regul $\alpha \approx 0.01$

Visual inspection. A depth map? No!

Figure: Regul $\alpha \approx 0.01$ Figure: Regul $\alpha \approx 0.05$

Visual inspection. A depth map? No!

Figure: Regul $\alpha \approx \textbf{0.01}$

Figure: Regul $\alpha \approx 0.05$

Figure: Regul $\alpha \approx 0.1$

IGN

Feb2019

Visual inspection. Grayshading?

Visual inspection. Grayshading? Yes!

Figure: Regul $\alpha \approx 0.01$

Visual inspection. Grayshading? Yes!

Figure: Regul $\alpha \approx 0.01$ Figure: Regul $\alpha \approx 0.05$

► Visual inspection. Grayshading? Yes!

Figure: Regul $\alpha \approx 0.01$

Figure: Regul $\alpha \approx 0.05$

Figure: Regul $\alpha \approx 0.1$

Feb2019

Visual inspection. Color-coded depth?

Visual inspection. Color-coded depth? Perfect 3D model?

Feb2019 Figure: Color-coded DSM.

IGN

Figure: Master image.

Visual inspection. Grayshading, again, reveals the quality.

▶ Visual inspection. Correlation score as a quality indicator.

Visual inspection. Understanding poor correlation scores.

19

IGN

Figure: Master image.

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation **Matching quality evaluation** With dense ground truth W/o dense ground truth, qualitative

 $\ensuremath{\mathsf{W}}\xspace/o$ dense ground truth, quantitative

UAV-related research at IGN Hardware Algorithms

1. With many ground GPS points :

2. With stereo restitution :

1. With many ground GPS points :

- + bias in Z-coordinate due to orientation
- +- random noise
 - generalization and misalignment
 - access difficulty (e.g., trees, buildings)
- 2. With stereo restitution :
 - + any identifiable points can serve control
 - + no need for field measurements, complementary control
 - + bias in XYZ-coordinate
 - +- random noise
 - need to dispose of good orientations
 - manual labour

Matching quality evaluation Bilans

Error type	CP	GPS point	Reconstructed 3D	Shaded/Correl map
Bias in X, Y	\checkmark			
Bias in Z	\checkmark	\checkmark		
Random noise		\checkmark	\checkmark	\checkmark
Generalization			\checkmark	\checkmark
Misalignment			\checkmark	\checkmark

Table: Error detectability.

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN

Hardware Algorithms

UAV-related research at IGN Hardware

CamLIGHT:

- HR resolution
- global shutter
- ▶ weight ≈ 300g (lens dependent)
- metric camera
- operational in multi-sensor modes

$\mathsf{UAV}\text{-related}$ research at IGN Hardware

CamLIGHT:

- HR resolution
- global shutter
- ▶ weight ≈ 300g (lens dependent)
- metric camera
- operational in multi-sensor modes
- equipped with GPS ublox module
- accurate synchronisation

UAV-related research at IGN Hardware

Time synchronization of sensors : Amplitude

UAV-photogrammetry pipeline

Quality Analysis

Relative orientation Absolute orientation Matching quality evaluation With dense ground truth W/o dense ground truth, qualitative W/o dense ground truth, quantitative

UAV-related research at IGN

Hardware Algorithms

Selected contributions:

- Lever arm modelling, [1]
- Thermal effect modelling, [2]
- New camera models, [3]
- New tie-points computation, [4]

Lever arm modelling, [1]

- self-calibration method
- ► GCPs indispensable
- ► ≈1cm accuracy with 1GCP, evaluation on many CPs

Table 1

Residuals on check points depending on processing strategies.

		Estimated parameters			MAE ^a (cm/px)	s ^b (cm)
	Relative poses	Absolute centers	Lever-arm	Camera model		
S_1	(Section 4.1)	(Section 4.2)	(Section 4.4)	(Section 4.1)	2.4/2.0	0.8
S_2	Tightly	Tightly coupled		-	0.8/0.7	0.8
S_3		Tightly coupled		-	0.8/0.7	0.8
S_4	Tightly coupled		-	Tightly coupled	0.8/0.7	0.7
S_5	Tightly coupled			0.8/0.7	0.8	

^a Mean Absolute Error.

^b Standard Deviation.

Thermal deformation modelling, [2]

Figure: The experiment. Top: calibration field, the camera and the heater. Bottom: inter-epoch correlation and deformation maps.

Thermal deformation modelling, [2]

Figure: Temperature ranges and the deformations decomposed into: rotation, IGN translation and focal length variation. F_{eb2019}

Thermal deformation modelling, [2]

Nom Point	Images Brutes	Images Corrigées	Ratio C/R
Pt_1 (mm)	5.3	0.2	24
Pt_2 (mm)	5.2	0.9	5
Pt_3 (mm)	5.4	0.7	7
$Pt_4 (mm)$	4.4	1.9	2
Pt_5 (mm)	5.9	1.6	3
$Pt_6 \text{ (mm)}$	4.6	1.1	4
$Pt_7 \text{ (mm)}$	5.2	0.1	390
$Pt_8 \text{ (mm)}$	5.6	0.1	82
Pt_9 (mm)	5.0	0.6	7
Pt_{10} (mm)	5.5	0.1	36
Moyenne (mm)	5.2	0.7	7

Figure: Residuals on CPs without and with the thermal correction.

New camera models, [3]

finer precision camera modelling

Figure: The *bending effect* with different camera models.

Tie points computation, [4]

- more precise image measurements
- high manifold
- more homogeneous distribution

 2^{nd} iteration photogrammetry : use a rough 3D model to guide the detection of new, better tie-points.

Tie points computation, [4]

- more precise image measurements
- high manifold
- more homogeneous distribution

 2^{nd} iteration photogrammetry : use a rough 3D model to guide the detection of new, better tie-points.

Figure: Tie-points color-coded with residuals. Left: SIFT, right: new tie-points. IGN $$_{\rm Feb2019}$$

Tie points computation, [4]

- more precise image measurements
- high manifold
- more homogeneous distribution

 2^{nd} iteration photogrammetry : use a rough 3D model to guide the detection of new, better tie-points.

 $\label{eq:IGN} \begin{array}{l} \mbox{Figure: Left: histogram of residuals for SIFT and new tie-points; right: respective points multiplicities.} \end{array}$

IGN

31

 M Daakir, Marc Pierrot-Deseilligny, Pierre Bosser, Francis Pichard, Christian Thom, Yohann Rabot, and Olivier Martin.

Lightweight uav with on-board photogrammetry and single-frequency gps positioning for metrology applications.

ISPRS Journal of Photogrammetry and Remote Sensing, 127:115-126, 2017.

[2] M Daakir, Y Zhou, M Pierrot Deseilligny, C Thom, O Martin, and E Rupnik.

Improvement of photogrammetric accuracy by modeling and correcting the thermal effect on camera calibration.

ISPRS Journal of Photogrammetry and Remote Sensing, 148:142–155, 2019.

[3] V Tournadrea, M Pierrot-Deseilligny, and PH Faure.

Uav linear photogrammetry. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 40, 2015.

 [4] Nguyen Truong Giang, Jean-Michaël Muller, Ewelina Rupnik, Christian Thom, and Marc Pierrot-Deseilligny.

Second iteration of photogrammetric processing to refine image orientation with improved tie-points.

Sensors, 18(7):2150, 2018.

ISTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

Thank you for your attention!

E Rupnik, M Pierrot Deseilligny