

HARMONIOUS

Infrared thermography - hydrological and hydraulic João de Lima, Pruhonice, 27.2.2019

Laboratory and field applications of infrared thermography: estimation of hydrological and hydraulic variables

João L.M.P. de Lima^{1,2}, José M. Gonçalves³, Isabel P. de Lima^{1,2}

- (1) Department of Civil Engineering, University of Coimbra, Portugal;
- (2) Marine and Environmental Sciences Centre (MARE), Portugal;
- (3) Polytechnic of Coimbra, College of Agriculture, Coimbra, Portugal.

Validating thermal techniques for monitoring surface processes

FACULDADE DE CIÊNCIAS **E TECNOLOGIA** UNIVERSIDADE DE COIMBRA

University of Coimbra

Laboratory of Hydraulics, Water Resources and Environment

C

Solo descoberto

8 t ha⁻¹ (Pó de coco)

Brasil - Alto Ipanema Basin - Field work Infrared thermography

Variabilidade espaço-temporal da umidade do solo

Thermal infrared imagery

<u>quantitative estimation</u> of several hydrologic processes;

e.g.
map infiltration, macropores,
estimate flow velocities,
identify water sources, accumulation of waters, connectivity
monitor vegetation evapotranspiration

. . . .

INFRARED THERMOGRAPHY TO ACCESS SOIL SURFACE CHARACTERISTICS

Microrelief and rill morphology

Real image

Thermal image

Water repellency

Real image

Thermal image

Permeability

Real image

Thermal image

Macroporosity

Real image

Thermal image

Research at UC: Estimation of soil surface microrelief and rills

Thermal images with increasing vegetation/mulch

3D Model from thermograms

2 Points calibration (temperature - measure)

Profile meter (single line)

Research at UC: Mapping soil permeability and macro-porosity

Detection of macro-porosity

Research at UC: Mapping soil permeability and macro-porosity

Mapping of soil porosity

SHALLOW FLOWS

TRACER TECHNIQUES

DYES

SALTS

THERMAL TRACER & INFRARED THERMOGRAPHY

TECHNIQUE TO ESTIMATE SHALLOW FLOW VELOCITIES

THERMAL TRACER VS DYE TRACER

GoPro Hero 3

Thermal tracer leading edge

Thermal tracer leading edge

SHEET FLOW

RILL FLOW

COMPARISON OF 3 TRACERS

TRIPLE TRACER TECHNIQUE

DYED

-

SALTED

-

HEATED

Food coloring

Table salt 5 g/L water

Electric kettle

COMBINED IN ONE TRACER

DATA ACQUISITION AND VISUALIZATION

LABORATORY SETUP

Acrylic

Sand

Stones

Synthetic grass

Discharge: 30 – 1800 ml/s

Slopes: 0.8, 4.4 and 13.2%

THERMAL TRACER RESULTS

 $Q \approx 850 \text{ ml/s}$; S = 0.8%; Vol. tracer = 85 ml

Acrylic

 $V_{LE} = 0.703 \text{ m/s}; V_{C} = 0.684 \text{ m/s}$

Stones

$$V_{LE} = 0.359 \text{ m/s}; V_C = 0.240 \text{ m/s}$$

THERMAL TRACER RESULTS

 $Q \approx 1100 \text{ ml/s}$; S = 0.8%; Vol. tracer = 110 ml

Acrylic

 $V_{LE} = 0.762 \text{ m/s}; V_C = 0.750 \text{ m/s}$

Synthetic grass

 $V_{LE} = 0.338 \text{ m/s}; V_C = 0.299 \text{ m/s}$

Work in progress...

Development of **infrared thermography** based tools for the analysis of water distribution efficiency in irrigated agricultural fields, aiming at <u>optimizing the use of water</u> in agricultural systems.

2020 Santanan

Irrigated area of 12.500 ha, supplied by

• of 12.500 ha, supplied by Mondego

In addition to other detailed data:

- ✓ IR thermography (ground) measurements at the local and field scales (for assessing the canopy, leaf and soil), using <u>handheld cameras</u> and <u>UAS</u>,
- ✓ satellite based images.

✓ satellite based images.

CONCLUDING REMARK

We aim at better understanding bridging between the different scales of observation....

... and contributing to using **infrared thermography based tools** (*that use non-invasive and non-destructive technology*) to achieve better water management and soil and water conservation.

Publications on thermography (2018)

Abrantes, J.R.C.B., R.B. Moruzzi, A. Silveira, <u>J.L.M.P. de Lima</u>, 2018. Comparison of thermal, salt and dye tracing to estimate shallow flow velocities: Novel triple tracer approach. **Journal of Hydrology**

Prats S.A., J.R. Abrantes, J.J. Keizer, C.O.A. Coelho, <u>J.L.M.P. de Lima</u>, 2018. Comparing topsoil char, ash and stone cover effects on the post-fire hydrologic and erosive response under laboratory conditions. **Land Degradation & Development**

Abrantes, J.R.C.B., A. Silveira, AA.A. Montenegro, R.B. Moruzzi, <u>J.L.M.P. de Lima</u>, 2018. Combining a thermal tracer with a transport model to estimate shallow flow velocities. **Physics and Chemistry of the Earth**

Mujtaba B., <u>JLMP de Lima</u>, 2018. Laboratory testing of a new thermal tracer for infrared-based PTV technique for shallow overland flows. **CATENA**

Obrigado

