

התכנית הלאומית

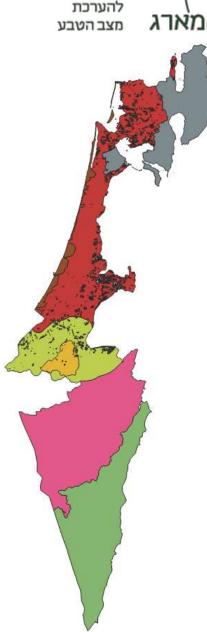
להערכת מצב הטבע

Woody vegetation monitoring combining high-resolution multi-spectral UAV imagery a case study from a sub-arid region in Israel

UNIVERSITY תלאביב

Pok le ANNA-k"E3 NON

Rafi Kent¹, Harel Dan¹, Idan Shapira¹, Amir Perlberg² and Irina Levinsky¹


1. Hamaarag – Israel's national nature assessment program, The Steinhardt museum of natural history, Tel-Aviv University 2. Open landscape unit - The Steinhardt museum of natural history, Tel-Aviv University

The Monitoring program

- The Maarag is responsible for monitoring Nature's status in Israel. Founded and funded by INPA, JNF and MoEP
- Divided Israel into 9 monitoring units
- Woody vegetation is an indicator of human impact direct and indirect

Methods of monitoring woody vegetation

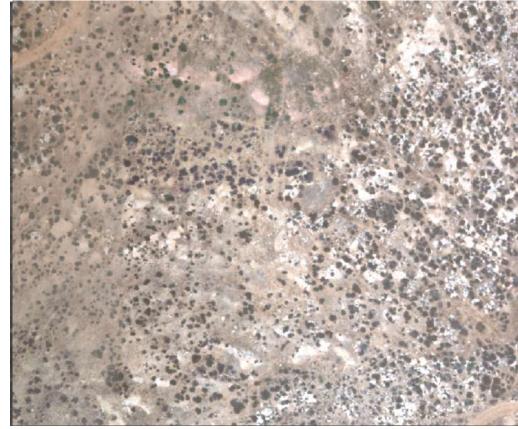
- Manual identification and repeated measures of individual plants in permanent plots
- High inter-observer and inter-annual variability
- Combining remote-sensing techniques reduces subjectivity
- Introducing new challenges

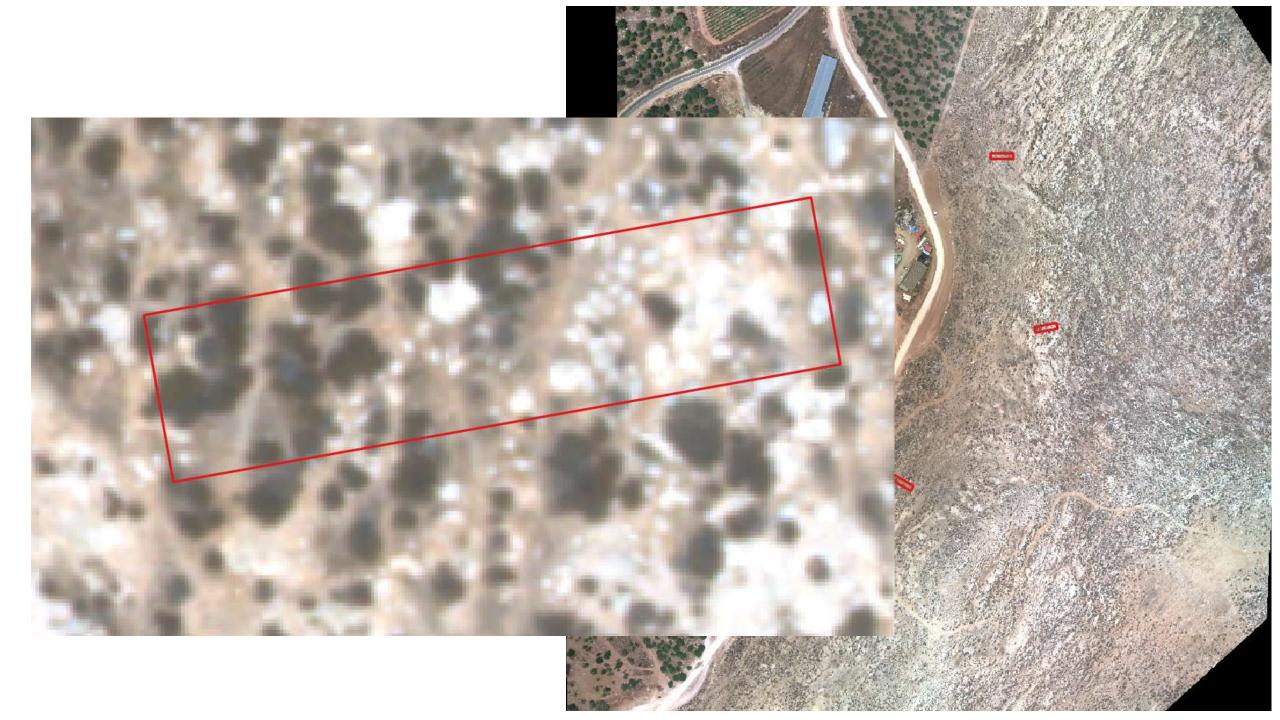
UAV imagery

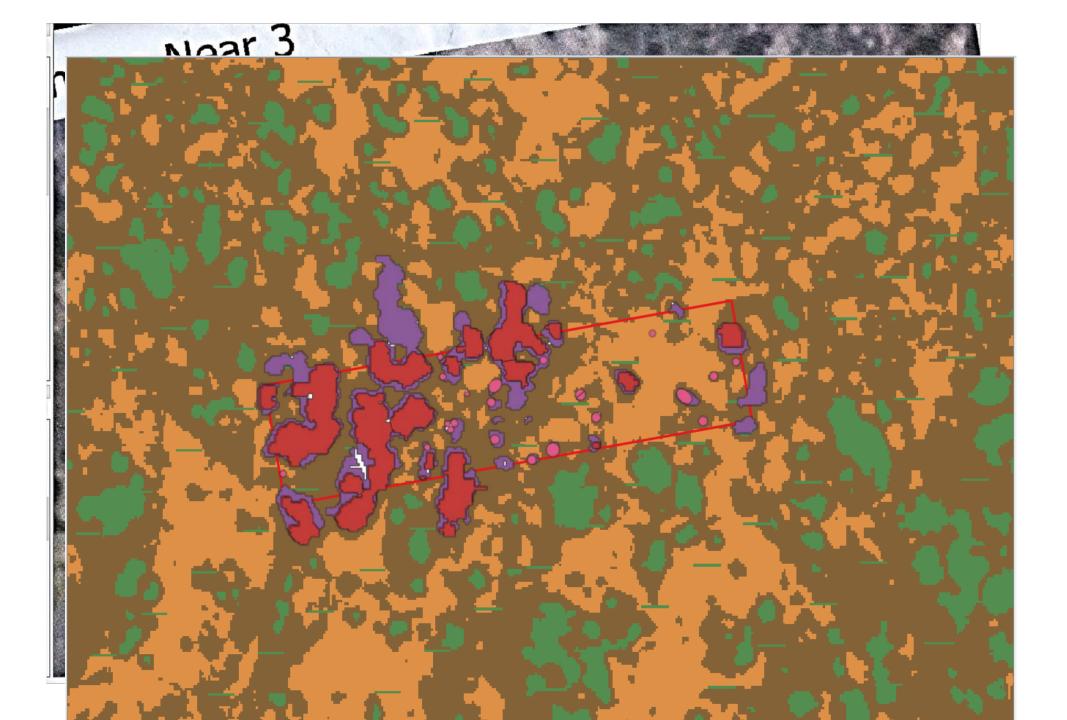
- UAV multi-spectral imagery allows identification and quantification of woody vegetation patches, with high repeatability and precision*
- Further, it allows quantifying vegetation cover over larger areas
- Depends on flight and light conditions
- Here I show a pilot of incorporating UAV images to improve spatial and temporal coverage, as well as improve precision in monitoring vegetation cover in the Mediterranean-Desert transition zone of Israel as part of the national monitoring program carried out by the Maarag

The unit, the site and the plots

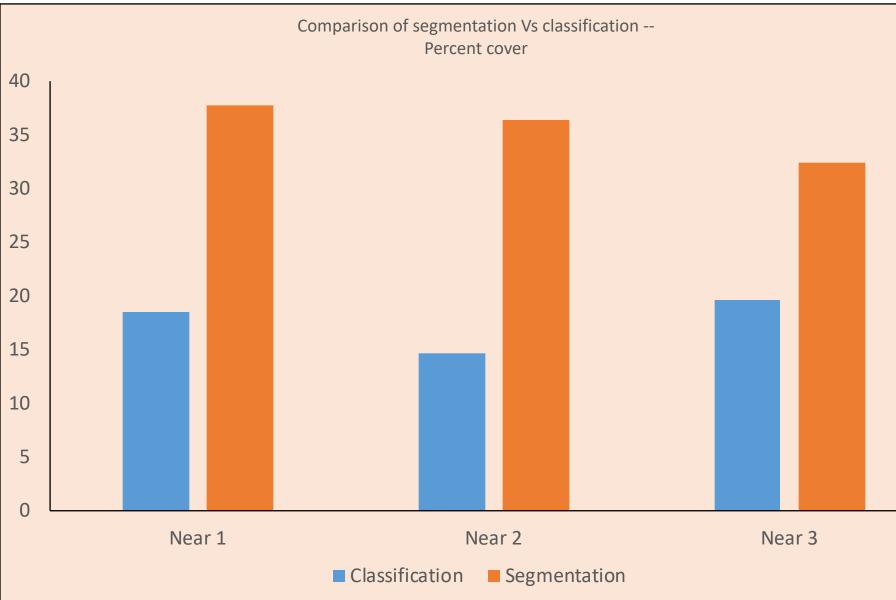
- The Med-arid transition zone (hereinafter Sfar) is characterized by relatively low precipitation (150-400 Mm per year). It is heavily impacted by human settlements as well as a concentration of intensive crop agriculture. It also contains several planted coniferous forests
- The sites where the monitoring took place are near Jewish rural settlements, testing for human impacts on species composition and vegetation cover
- Sampling design includes three plots near the settlement ('near' – 0-100m) and three away from the settlement ('far' – 500 – 2000m)


- Each plot is sampled every two years. A plot consists of a 4X4m fixed plot (in the 3rd monitoring round plots size was increased). All individual woody plants were identified and measured (two diameters)
- In the 2017-2018 monitoring, we added UAV imagery, and used it to increase plot size (5X20m, all analyses in this presentation relate to the larger plots)





UAV and sensors


- The UAV is a multi-copter, taking 10cm resolution images
- Micasense sensor with 5 spectral bands Red, Green, Blue, RedEdge, NIR
- Analyses included segmentation using a NDVI threshold (hereafter 'segmentation' and maximum likelihood classification using 5 spectral bands, as well as NDVI and REDVI (hereafter 'classification')
- Ground data were collected by experienced "Deshe" surveyors, based on identified woody vegetation patches

Some results

Percent cover, as well as mean patch size was overestimated by segmentation compared to classification

False negative identification (missed patches of woody vegetation by the classification) constituted only a marginal added cover (0.34 m², equaling 0.34% of the plot total area)

False positive (misidentification of herbaceous plants as woody) constituted 0.48% of the plot area, combined

Species by plot

Common/latin name	Hebrew name	Near 1	Near 2	Near 3
Bindweed	חבלבל זיתני	+	-	-
Jerusalem Spurge	חלבלוב מגובשש	+	+	+
Prickly Burnet	סירה קוצנית	+	+	+
African Fleabane	צמרנית הסלעים	+	+	+
Astragalus bethlehemiticus	קדד בית הלחמי	+	+	-
Carlina curetum	קיצנית כרתית	+	-	-
Convolvulus auricomus	חבלבל מגובב	+	-	-
Noaea mucronata	נואית קוצנית	+	+	+
Jerusalem Sage	שלהבית קצרת שיניים	+	-	-
Pink Sun-rose	שמשון הדור	+	+	-
Cat-thyme Germander	געדה מצויה	+	+	-
Common Ballota	גלונית מצויה	-	+	-
Asparagus horridus	אספרג ארוך עלים	-	+	-
Artemisia sieberi	לענת המדבר	-	+	-
UK	בלתי מזוהה	+	-	-
Total		12	11	4

Conclusions

- UAVs are a useful tool for woody vegetation monitoring, especially in low productivity environments
- Fast and easily automated methods (i.e., segmentation based on thresholds) are sensitive, and might result in over- or under-estimates of vegetation cover
- Supervised classification offers a more robust solution, however it is more time consuming
- A combination of methods is probably optimal to improve accuracy, while maintaining a semi-automatic process

התכנית הלאומית להערכת מצב הטבע

Thanks for listening

We also thank our funding partners – INPA, JNF, MoEP