
1 

 

International Journal of Remote Sensing 38 (8-10): 2177-2198; doi: 

10.1080/01431161.2016.1275059 

Unmanned aircraft in nature conservation – an example from plant invasions 

JANA MÜLLEROVÁ*†, TOMÁŠ BARTALOŠ‡, JOSEF BRŮNA†§, PETR DVOŘÁK¶, 

MICHAELA VÍTKOVÁ† 

†Institute of Botany, The Czech Academy of Sciences, 25243 Průhonice, Czech Republic; ‡GISAT Ltd., 17000 Prague, Czech 

Republic; §Institute of Environmental Studies, Faculty of Science, Charles University, 12844 Prague, Czech Republic; ¶Institute 

of Aerospace Engineering, Brno University of Technology, 61669 Brno, Czech Republic 

* corresponding author: jana.mullerova@ibot.cas.cz 

Abstract: 

To successfully fight plant invasions, new methods enabling fast and efficient monitoring are needed, and remote 

sensing can make their management more efficient and less expensive. However, the data resolution, cost and 

availability can be limiting. Optimal solution depends on the species characteristics, where the spectral and 

spatial resolution can compensate each other to some extent, and phenology plays an important role. Available 

high spatial resolution satellite data are sufficient for recognition of species that are distinct and either large or 

form uniform patches at size comparable to the data pixel size. For other species, higher spatial resolution is 

needed, and unmanned aircraft (UAV) provide data of extremely high spatial resolution (cm) at low cost and high 

flexibility. We assess its potential to map invasive black locust (Robinia pseudoaccacia), testing imagery of 

different origin (satellite, UAV), spectral (MSS, RGB+NIR) and spatial resolution, and various technical 

approaches to choose the best strategy for the species monitoring balancing between precision of detection and 

economic feasibility. Using purposely designed low-cost UAV with tailless fixed wing design for two consumer 

cameras (RGB and modified NIR) ensures robustness and repeatable field performance while maintaining high 

aerodynamic efficiency, with resulting mapping capacity over 10 km2 per day. Several challenges exist in UAV 

application, such as lower spectral resolution, geometrical and radiometric distortions, and significant amount of 

data (necessity of automatic processing). In our study we tested different options of UAV data processing and 

present comparison of resulting orthomosaic accuracies. For repeated measurements it is extremely important to 

ensure spatial co-registration of pixels/objects from different phenological phases. Investment in GPS receiver in 

the UAV and GPS post-processing eliminated laborious collection of ground control points, while maintaining 

the co-registration of objects across multiple flights. In our study we provide evidence of benefit of the low cost 

unmanned system for species monitoring with high classification accuracies of target species from UAV 

orthomosaic outcompeting WorldView-2 satellite data, and describe methodology that can be used for practical 

management of invasions. 
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Introduction 

Plant invasions impose increasing impacts not only on biodiversity and ecosystem functioning, 

but also economy and human health (Pimentel, Zuniga and Morrison 2005; Hulme et al. 2009; 

Ehrenfeld 2010; Pyšek and Richardson 2010). They can be fast and very dynamic, and this makes 

the control measures difficult especially at the later stages of invasion (Pluess et al. 2012). 

Eradication should therefore focus first on recently infested sites (Müllerová et al. 2005; Pluess et 

al. 2012). Hence early and regular detection of the invading species and rapid management 

response on both local and landscape level is crucial (Rejmánek 2000; Vilà and Ibáñez, 2011), 

and new techniques enabling timely, fast and precise monitoring are urgently needed (European 

Commission 2008, 2014; van Kleunen et al. 2015).  

Remote sensing (RS) represents a promising option, potentially reducing the needs for 

extensive field campaigns and connected costs (Lawes and Wallace 2008, Buchanan et al. 2015; 

Marvin et al. 2016). It has been successfully applied for some invasive species (for reviews see 

Huang and Asner 2009; Bradley 2014; Rocchini et al. 2015), mostly for shrubs and trees 

(Hamada et al. 2007; Hantson, Kooistra and Slim 2012; Somodi et al. 2012). The potential for 

invasive species monitoring has still not been fully exploited and detection algorithms are 

missing for the majority of invasive species. Our species of interest, black locust (BL, Robinia 

pseudoaccacia), an invasive North American tree widely planted in Europe for centuries, is not 

much exploited although it is very common in Europe. Somodi et al. (2012) explored Landsat 

and aerial data (RGB and RGB+NIR) potential for the species detection, comparing spring and 

summer imagery. They determined the spring flowering as an important for the species detection. 

Wang et al. (2015) used combined spectral, spatial and textural information from IKONOS 

imagery to assess the BL health conditions. By using spectral characteristics combined with 

texture measures they were able to identify the forest health and characterize the spatial structure 

of stressed forests. 

Data of very-high spatial resolution, such as from unmanned aerial system (UAV), together 

with semi-automated, computer-assisted processing can enable cost-effective, fast and frequent 
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monitoring in case of appropriate methodological approach (Müllerová et al. 2016). For plant 

species detection, the proper timing of the RS data acquisition is important since some species 

might be better detected at certain phenological stages (Müllerová et al. 2013). UAV can provide 

flexible data acquisition of very high spatial and temporal resolution data at very low costs, and is 

also suitable for targeted monitoring (e.g. focus on sites of high natural interest such as 

NATURA 2000 sites, areas prone to invasion, or those recently managed to check eradication 

effectivity). Among the main limits are reduced spectral resolution compared to the satellite 

imagery, and the data degradation by geometrical distortions and other inhomogeneous artefacts 

(Colomina and Molina 2014; Whitehead and Hugenholtz 2014). The high spatial resolution may 

also result in ‘salt and pepper’ classification in case of increased within-patch variability (if 

image resolution does not match the resolution of the studied community texture (Zweig et al. 

2015). 

Unmanned platforms are being increasingly utilized in diverse scientific fields including 

ecology (Whitehead et al. 2014, Zweig et al. 2015). Majority of the used UAV systems are based 

on multicopter aerial platforms (Whitehead and Hugenholtz 2014). Since such type of platform is 

able to cover only limited areas due to the inherent energy demands of the rotorcraft concept, 

fixed wing UAVs are much better suited to the monitoring purpose, and their operational radius 

is restricted primarily by the legislation (most often requiring visual contact between the UAV 

and its operator) rather than the capability of the platform itself. This paper aims at describing the 

cost effective and efficient methodology of invasive plant species monitoring (on example of 

invasive black locust) using purposely designed unmanned aerial system. Compared to the 

commercial products, such as Trimble/Gatewing, SenseFly eBee, Aeromapper and others, 

deployment of in-house developed system brings the advantage of reduced cost, operational 

experience and most importantly it can be easily adapted for the required payload. 

In our research, we seek for optimal low-cost solution of invasive species monitoring, 

applicable in both plant ecology and practical management. We describe methodology of 

application of UAV for such purpose, assessing to what extent it can be used to analyse plant 

invasions (Figure 1). 
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Figure 1. Flow-chart of the presented study. 

 

2. Methods 

2.1 The deployed unmanned system 

Development of dedicated unmanned platform optimized for invasive species monitoring forms 

an important part of presented low-cost invasive monitoring solution. During the development, 

several aerial platforms were tested (Table 1).  

 

Table 1. Summary of small unmanned platforms used for invasive species monitoring in this 

project. 

 VUT 712 VUT 713 VUT 720 

    

Span 2.1 m 2.0m 2.6 m 

Length 0.9 m 0.7m 1.3 m 

mTOW 3.1 kg 2.7kg 2.2 kg 

vC 17 m/s 18m/s 15 m/s 

Battery LiPo 4S 5000mAh LiPo 4S 5000mAh LiPo 3S 5000mAh 

Endurance 1 hr 0.7hr 1 hr 
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Power 650 W 300 W 360 W 

Payload 0.8 kg 0.9 kg 0.3 kg 

Autopilot Pixhawk autopilot DroPix autopilot APM2.5+ autopilot 

Camera 
2x Canon  S100 

stabilized 

2x Sony A5100 + 

E20/2.8 

1x Canon  S100+ 

1x GoPro 

Based on SkyWalker X8 RVJET Multiplex Cularis 

 

For the initial trials a motorized glider concept was selected (VUT 720, Dvořák et al. 2013, 

Figure 2a) to take advantage of the low wing loading. Combined with expanded polypropylene, 

a durable material featuring excellent impact properties, this concept ensures safe landings even 

in rugged terrain. The platform is hand-launched with no need for additional equipment. 

However, VUT 720 is able to carry only one camera (Canon PowerShot S100) at a time. The 

requirement to produce RGB+NIR data for further classification and research meant that two 

consecutive flights had to be performed at each location. This procedure not only resulted in 

increased time spent at a single site, but also introduced significant problems during image 

processing, as the lighting conditions often change during consecutive flights making the 

radiometric corrections of the captured images more complex. Therefore a platform providing 

actively stabilized mount for two Canon S100 cameras was devised – VUT 712 (Figure 2b). Data 

acquired by VUT 712 showed higher quality compared to previous datasets in terms of both 

radiometric consistency and georeferencing accuracy.  

 

  

Figure 2. Unmanned systems used in the project - VUT 720 (a), VUT 712 (b), and VUT 713 (c). 
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Our operational experience clearly shows that consumer point-and-shoot cameras such as Canon 

S100 are not well suited for the harsh environmental conditions of repeated mapping missions. 

Retractable zoom lenses of the cameras are inherently prone to (uncommanded) focal length 

changes, deteriorating the photogrammetric quality of acquired imagery. Dust can easily 

penetrate the lens during landings, resulting in jammed lens and prolonged down-times of the 

platform. 

Deployment of dedicated multispectral cameras (such as Micasense RedEdge) or an array of 

industrial grade cameras with spectral filters would overcome mentioned problems; however the 

costs would limit operational use. As a cost-effective solution, fixed pancake lens (Sony E20/2.8) 

coupled to a lightweight mirrorless camera (Sony A5100) has been deployed in a new platform – 

VUT 713 (Figure 2c, Table 2). To save weight, the stabilized mount was substituted by software 

limited camera triggering based on UAV attitude. Our operational experience confirms the 

described setup as a reliable and high-performing system. Approximate costs of our solution are 

1,000 EUR for the unmanned system and 1,600 EUR for the cameras (NIR and RGB). Men 

power is not considered in the calculation. To assemble the system no professional expertise is 

needed. Elementary technical skills and motivation are sufficient (for more information see e. g. 

https://conservationdrones.org).  

 

Table 2. Technical details of an aerial platform VUT 713. 

Platform Range Video RVJET 

Remote Control Graupner MC 22s + Jeti 2,4GHz Tx Modul + JetiBox Profi 

RC telemetry Jeti Duplex Rsat2 + Mvario2EX + MT125EX 

Battery Schweighofer Modster 4S1P 5000mAh 

Motor speed controller Foxy R-65SB 65A SBEC 

Motor Dualsky XM3542EA-6 790RPM/V modified, 140g 

Propeller Aeronaut CAM Carbon folding prop 13/6.5” 

Servos 2 x elevon: Hitec Mini Digital Servo HS-5245MG 

Autopilot Drotek Dropix v2.1, 3DR PowerModule, Digital Airspeed sensor 

GPS Drotek u-blox M8T, external magnetometer 
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Autopilot telemetry SiK radio V2 433mHz 

Ground station Panasonic Toughbook CF-19 

Camera 2xSony A5100 + E20/2.8 

 

 

2.2 Image acquisition and pre-processing 

2.2.1 Camera selection and spectral characteristics 

For vegetation classification the NIR band is very important. As mentioned in previous chapter, a 

set of two consumer cameras (one standard RGB, and one modified to be sensitive in NIR band - 

built-in IR-cut filter removed and Hoya R72 filter added) was used instead of expensive 

multispectral camera (Table 3, Figure 3). Two camera types were tested during the project - 

Canon S100 and Sony A5100 (Table 3). The sensor of Canon S100, size of 1/1.7" 

(7.44 × 5.58 mm) resulted in comparably high levels of noise and low dynamic range of the 

pixels. The NIR modified camera was especially affected by this fact due to the longer 

wavelength of sensed light. The APS-C (23.5 × 15.6 mm) sized sensor of Sony A5100 camera 

provided nearly 8.8 times larger photosensitive area compared to the S100 camera. Fixed lens of 

Sony A5100 addressed the problems experienced with retractable zoom lens of Canon S100. 

 

Table 3. Comparison of the two cameras setup used for tested unmanned platforms. 

Platform VUT 712 VUT 713 Comparison 

Cameras 2x Canon S100 

(VIS + NIR) 

2x Sony A5100 + 

E20/2.8 (VIS+NIR) 

 

Sensor size 1/1.7" (7.44 x 5.58 mm) APS-C (23.5 x 15.6 

mm) 

~9 times larger; 

FIXED LENS 

Stabilization External mechanical (2 axis 

Simple BGC BLDC gimbal) 

+ Internal optical 

N/A 

(autopilot does not 

trigger if the attitude 

exceeds preset 

OK even without 

stabilization 
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limits) 

Georeferencing  Internal GPS 

 Precise shutter time 

(CHDK script) synchro 

with autopilot GPS 

 Autopilot DGPS 

– trigger log 

 Correction for 

shutter lag 

Much better precision 

Triggering Intervalometer ~0.5Hz 

(CHDK scripting) 

Distance based – 

from autopilot 

system 

Efficient – no 

unnecessary 

images; maintains 

overlap 

Total Weight 2x192g + 280g gimbal = 

664g 

2x360g = 720g Not a significant 

penalty 

 

 

Figure 3. Spectral response of Sony A5100 camera – standard RGB and NIR version without IR-cut filter (a), 

compared to the spectral sensitivities of the WorldView-2 satellite sensors (b) based on DigitalGlobe datasheet 

(DigitalGlobe 2016).  

 

2.2.2 Triggering 

The sensors were periodically triggered during the flight to cover the area of interest with 

sufficient image data. Significant overlap was required for robust mosaicking. Typically, the 

missions were flown with overlap and sidelap ranging between 80% and 85% of the image height 

and width, respectively. 

To achieve homogenous coverage of the area, the following camera triggering strategies were 

employed: 
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 Constant time between images (intervalometer). This strategy has been implemented with the 

S100 cameras by means of modifying firmware (CHDK 2013). The firmware ran an in-house 

developed script based on KAP 3.4 (KAP 2015).  The script triggered the camera in preset 

intervals (2 s intervals are proven to be the shortest interval the Canon S100 camera is able to 

maintain for prolonged periods). This approach provided homogenous coverage under ideal 

conditions. Wind and atmospheric turbulence caused the images to be spaced unevenly in real 

world application because of the varying ground speed of unmanned platform. 

  Constant distance between images. Triggering was performed based on distance travelled by 

the UAV – a value computed by an autopilot from GPS data. This approach ensured 

homogenous image coverage even with a strong wind during the mapping flight. The cameras 

needed to be capable to capture the imagery with sufficient frequency - Sony A5100 cameras 

achieved 1 s intervals for prolonged periods. 

 

2.2.3 Georeferencing 

Structure-from-motion approach (SfM; Dandois and Ellis 2010; Westoby et al. 2012) was used to 

generate the digital surface model (DSM) and resulting orthomosaic using Agisoft PhotoScan 

software (Agisoft 2016). The SfM approach identifies similar features in conjugate images, 

tolerating large variations in scale and image acquisition geometry. Even though PhotoScan has a 

simple interface with no possibility to control all the parameters, it is able to generate very dense 

and accurate three-dimensional point cloud (Turner et al. 2012; Whitehead and Hugenholtz 

2014).  

Using UAV data for monitoring of invasive species brings a principal advantage of very high 

spatial resolution. On the other hand, this resolution poses significant demand for geometrical 

accuracy to fit other ancillary or reference data such as aerial orthophoto or satellite VHR 

imagery or to carry out change detection using repeated data. Since low-cost components are 

primarily preferred in our project, precise georeferencing of the final image mosaics may be an 

issue, leading to unacceptable geometrical distortions and/or positional shifts. Several inputs 

influence the precision of final orthomosaic. Besides quality and type of the GPS receiver and the 

measurement method itself, further limitations such as shutter lag or availability of GPS 

corrections have to be considered. 
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To overcome such deficiencies and for the overall improvement of the final geometrical 

accuracy, different procedures were tested to evaluate the best setup balancing the accuracy and 

costs. At the first phase, only GPS built in the camera was used with original EXIF-based GPS 

information. Accuracy achieved by such low-end camera GPS burdened by high error rate up to 

several meters resulting in expected shifts of the processed orthomosaic. Influence of random 

misplacement of GPS coordinates led to local differences up to ×10m. 

Alternatively, an aircraft/autopilot GPS receiver (u-blox LEA 6H) with assumed higher 

accuracy was considered. All trigger events were recorded by the camera with 10 ms accuracy by 

means of the in-house CHDK script. The resultant datalog was synchronized with GPS position 

log from autopilot during post-processing. In this case the proper synchronization of exact GPS 

position record and the image acquisition time is questionable, since the time coherence of the 

two independent devices may differ slightly resulting in a varying amount of misplacement.   

As an optimal solution, a GPS module capable of RAW data output (u-blox M8T) was added 

to the autopilot. Triggering of the cameras was performed by the autopilot based on the distance 

travelled between the two consecutive images. Subsequently an automated approach of image 

geotagging was developed: the flight log records are used as a base to derive the correct 

coordinates. The employed SONY A5100 cameras are characterized by a stable 90 ms lag 

between the trigger event and the instant the shutter is actually released. This lag is accounted for 

by the post-processing procedure. Besides the time stamp of the camera trigger event, the GPS 

position is continuously recorded during the flight with a 5Hz frequency. Due to the above 

mentioned shutter lag effect, a linear interpolation between two closest GPS log records is 

introduced to the final calculation of each image coordinates. Additionally the GPS coordinates 

were improved by post-processing using the RTKlib – an open-source package (Takasu 2009) 

and the respective correction data from the local Czech Reference Station Network (CZEPOS). 

Different settings were evaluated including the application of ionospheric map. An overview of 

positional variability is illustrated by Figure 4, comparing original, enhanced and post-processed 

GPS coordinates of the flight path and geo-tagged images. The overall positional accuracy was 

evaluated on the resulting orthomosaics only, based on signalized GCP with independently 

measured coordinates using reference data obtained with Trimble GeoExplorer GeoXH 6000 

differential GNSS with post-processing in Trimble Pathfinder Office using CZEPOS correction 

data (Figure 5).  
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Figure 4. An overview of different settings for correction of GPS data and geotagged images. 
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Figure 5. Errors of image projection (in meters) from two different unmanned systems (VUT 712 

with Canon S100 Camera and internal GPS; and VUT 713 with Sony A5100 camera and 

autopilot differential GPS) compared to 10 GCP targets measured in the field with differential 

GPS (estimated error <0.1m). Orthomosaics were generated using sparse point cloud based DSM 

from VIS images (a); dense point cloud based DSM from VIS and NIR images (b), and from VIS 

images only (c). The mean error of orthomosaics for VUT 712 was 2.56m ±0.38 (a), 4.82m ±2.07 

(b), and 2.56m ±0.35 (c), whereas for VUT 713 it was 0.99m ±0.26 (a), 2.60m ±1.03 (b), and 

1.44m ±0.40 (c). X and Y shifts are summarized in (d). SPC = sparse point cloud, DPC = dense 

point cloud.  
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SfM method implemented within Agisoft PhotoScan (Agisoft 2016) for generation of 

RGB+NIR orthomosaic enables different parametrization to adapt the processing workflow 

according to the required purpose. This may lead to balanced procedure reflecting the required 

radiometric and geometric quality at reasonable processing time. Since two separate cameras 

were used continuously for RGB and NIR, separate or co-processed option for computation is an 

option. Separate RGB processing results in appropriate image quality (Figure 5a) with no visible 

artefacts in DSM (Figure 6a). However, for proper vegetation mapping and monitoring the NIR 

spectrum is crucial and therefore NIR band needs to be co-registered with the other bands. 

Several tests of co-processed RGB and NIR imagery revealed an obvious error in DSM 

generation causing ‘islands’ of unrealistic elevations and noisy point clouds (Figure 6b). Such 

artefacts are directly projected to orthomosaic generation causing blurred and deformed areas 

within the imagery with influence on classification, reduced reliability (Figure 6e) and higher 

spatial error (Figure 5b). Even the fastest processing option using sparse point cloud method from 

RGB imagery results in better spatial accuracy (Figure 5a). Dense point cloud method applied to 

RGB data also produces more accurate results (Figure 5b) and is still faster than RGB and NIR 

co-processing. 

Aggressive depth filtering during the dense point cloud generation can be used to alleviate 

the aforementioned problems (Figure 6c). However, highly detailed DSM based on the dense 

point is prone to create mosaic artefacts in areas of complex patterns and steep DSM transitions. 

To minimize the distortions, the generated DSM can be exported with significantly lower spatial 

resolution (a factor of 100 seems to ensure balanced results) and re-imported for the orthomosaic 

creation - resulting in a smoother surface representation (Figure 6d). Alternatively, an external 

standard image processing software or package can be used for resampling combined with further 

filtering (extreme or missing values etc.). As a result, most of the artefacts are eliminated and 

overall image quality is enhanced (Figure 6f), and the original detailed DSM is preserved as 

a suitable ancillary data source for classification (e.g. vegetation height and heterogeneity).  

The VUT 713 equipped with Sony A5100 camera produced the most spatially precise results 

independent from the orthomosaic processing settings (Figure 5d). 
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Figure 6. Digital Elevation Models resulting from different processing settings. Only RGB data 

processed – DSM based on sparse point cloud (a); RGB+NIR images co-processed – DSM based 

on sparse point cloud displaying artifacts (b); dense point cloud with aggressive depth filtering 

applied to RGB+NIR co-processed data (c); resampled DSM in order to provide smooth base for 

orthomosaic texture (d); visual artefacts resulting from distorted DSM shown in b (e); final 

mosaic based on resampled DSM shown in d (f). 
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2.3 Field data collection 

Field data are crucial for successful training of automatic/semiautomatic algorithms and for 

validation purposes. Considering the resolution of the final UAV imagery, it is obvious that 

a classical field GPS and even a differential GPS is not precise enough. This is especially true in 

forested environment where the estimated precision drops to several decimetres or even meters. 

The differential GPS would also be costly and time consuming option for large scale field data 

collection.  

To overcome mentioned problems, we decided to use a field computer (a tablet with Android 

OS to decrease the costs) with UAV imagery or other available orthomosaics as a base for 

manual delineation of invasive species patches in the field with a help of integrated GPS. UAV 

imagery proved to be the most useful source of data for this purpose, because its high resolution 

provided enough detail necessary for precise delineation of vegetation polygons. To choose the 

best application/software for field data collection, we made a short review (Table 4), and after 

initial testing, chose Collector for ArcGIS as the most viable alternative since it allowed us to: (i) 

collect the data offline (i.e. independent from the internet availability); (ii) use our own imagery 

as a background; (iii) attach photographs and several attributes to the collected polygons in the 

field; (iv) distribute data to multiple users in the field which collect data to a centralized database; 

(v) use other supporting data overlays; and (vi) sync the data afterwards and make them directly 

accessible in ArcGIS for further processing including field photographs. 

  



16 

 

Table 4. A review of available applications/software for collection of field data. 
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2.4 Invasive species  

In our study we focused on black locust (BL, Robinia pseudoacacia). This deciduous tree has 

thick and deeply furrowed bark with stipular spines and alternate pinnately compound leaves. It 

flowers in May with distinct pendant large racemes of white flowers. In ideal conditions it can 

grow up to 30 m tall, however if water limited can take the shrubby dwarf appearance with 

unshaped crown and deformed trunk of 3 to 5 m. 

It is native to the south-eastern USA, listed amongst the 40 most invasive woody 

angiosperms globally (Richardson and Rejmánek 2011), categorized as highly invasive in several 

international databases (DAISIE, CABI, NOBANIS, EPPO, ISSG) and mentioned in national 

Black Lists in many countries (Nehring et al. 2013; Pergl et al. 2016). It was introduced to 

Europe at the beginning of the 17th century as an ornamental and soon became planted mainly 

thanks to its quality durable timber, fast growth, honey production and ability to stabilize and 

restore sandy or degraded soils (Vítková et al. 2017). Its area is still increasing; currently it is 

planted across Europe, temperate Asia, temperate South America, northern and southern Africa, 

Australia and New Zealand (Cierjacks et al. 2013; Li et al. 2014). Despite of economic benefits, 

it represents a serious threat to nature conservation.  

BL is a light-demanding pioneer species able to disperse quickly over short distances (2 m 

per year; Crosti et al. 2016) by numerous root suckers forming a connected system with the 

mother plant (Kowarik 1996; Cierjacks et al. 2013). Deliberate planting and transport of soil 

containing seeds and roots represent the main vectors for its long-distance dispersal (Pyšek et al. 

2012). It is extremely resistant to disturbance; mechanical damage of roots or trunks causes 

an increase in stem density and rejuvenation (Kowarik 1996). Moreover, it colonizes a broad 

range of xeric to mesic habitats, including steep rocks or toxic man-made substrata (Vítková and 

Kolbek 2010; Vítková et al. 2015; Cierjacks et al. 2013). As a nitrogen fixing species living in 

symbiosis with Rhizobium bacteria (Batzli et al. 1992) it increases soil nitrogen (Van Miegroet 

and Cole 1984; Vítková et al. 2015), supporting expansion of nitrophilous plants (Vítková and 

Kolbek 2010). If invading grasslands, it can cause scrub encroachment and canopy closure due to 

its fast growth, influencing considerably the light and microclimatic conditions of invaded 

habitats. This is especially true for dry and semi-dry grasslands, sites of high natural value, where 

it can cause extinction of many endangered light-demanding plants and invertebrates (Kowarik 

1996; Matus et al. 2003; Vítková and Kolbek 2010). Other threatened habitat types are open dry 
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forests, scrublands, alluvial habitats, agrarian landscapes, urban and industrial environments, and 

disturbed sites, such as post-fire sites, forest clearings and degraded forestry plantations. 

Removal of the species is costly and time-consuming, and requires repeated eradication measures 

and monitoring for at least three years due to its exceptional resprouting ability. In Central 

Europe, it is limited by late spring frost and short vegetation period (Vítková et al. 2017).  

 

2.5 Study area and analysed data 

Study area is located in central part of Czech Republic in typical Central European agricultural 

landscape of flat lowlands surrounding the river Elbe. It consists of managed mixed forests 

surrounded by arable fields. Forests are composed of native oak forests with variable proportion 

of elm, Scots pine and lime, and plantations of Scots pine and BL (both in monocultures and 

admixture). Two sites named Kozlovice (site 1) and Podvlčí (site 2) were covered by repeated 

UAV campaigns using VUT 712 and VUT 713; Figure 7). In flat terrain of the study site 1 (37 

ha; BL was used for stabilization of aeolian sands and is therefore planted in monocultures 

altered by monocultures of Scots pine or mixed stands with old native oaks. BL plantations are 

regenerated by coppicing in stripes. The study site 2 (30 ha) is a reclamation dump site from a 

nearby power station. BL stands are located on both slope and flat parts of the spoil tip, mostly in 

mixed stands with admixture of Scots pine, poplar, willow and birch. BL stands are unmanaged 

and younger compared to the site 1. 

In classification, UAV imagery from 6 June 2015 was analysed for both sites (Figure 7). As 

a reference WorldView-2 (WV-2) satellite multispectral data were used with nominal spatial 

resolution of 2 m consisting of four standard bands (red, green, blue and near-infrared), four 

additional bands (coastal, yellow, red edge, and near-infrared2) and panchromatic channel with 

0.5 m spatial resolution. The image was acquired on 30 August 2013 and covered the site 2 

(Figure 8). RPC (Rational Polynomial Coefficients) metadata provided with the imagery and 

detailed DSM were used for orthorectification. The quality of spatial accuracy of the orthomosaic 

was visually inspected by comparison to national aerial orthophoto (CUZK 2015). 
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 Figure 7. Study area with delineated areas of interest –Kozlovice (site 1) and Podvlčí (site 2). In 

green are UAV flights acquired on 6 July 2015 (both sites), in yellow is WorldView-2 imagery 

from 30th August 2013.  

 

2.6 Classification and validation 

Pixel-based approach was explored for classification. Supervised Maximum-Likelihood and 

Support Vector Machines (SVM) algorithms were tested. Reason for choosing SVM was that this 

algorithm is supposed to be less susceptible to the noise and unbalanced or limited number/size 

of training sites (see e.g., Camps-Valls and Bruzzone 2009). Training classes were selected with 

the main purpose to distinguish among invasive black locust and other types of vegetation. For 

each site and data, separate class signatures were generated, and subsequently the site 1 class 

signatures were applied to the UAV data from the site 2 acquired at the same day.  

To include the texture (surface heterogeneity/roughness) and context of the classified pixel 

into the classification process, information on surface structure were derived from DSM 
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generated as a by-product of UAV processing. Standard deviation and range of surface elevations 

parameters were tested using moving window of 5×5, 10×10, 50×50 and 100×100 pixels with 

range of 50×50 pixel window being the most informative. This information was included in 

classification as an additional layer. Due to geolocation inaccuracies of DSM and unavailability 

of detailed digital terrain model (DTM), precise vegetation height could not be calculated.  

Validation was performed using 200 randomly distributed points at each site outside the 

training areas, with ca half within the BL stands. User’s accuracy (UA; ratio of the correctly 

classified and total classified, evaluating reliability of the results for the user), producer’s 

accuracy (PA; ratio of the correctly classified and observed), and Kappa analysis (conditional 

Kappa index evaluating the statistical significance of the classifications, considers the actual 

agreement of the class in relation to the chance agreement, Congalton and Green 1999; Foody 

2002) of BL detection were calculated from error matrices. Kappa statistics, despite the strong 

criticism due to the randomness used as a baseline (Pontius and Millones 2011), is still a widely 

used mean of the accuracy measure providing an opportunity to compare our results with other 

studies. 

 

3. Detection results 

The accuracies achieved for the invasive BL were very high, with UAV imagery providing better 

results (up to 92/81% and 75/92% PA/UA for site 1 and 2, respectively) compared to the satellite 

imagery (WV-2; up to 61/81% PA/UA). Maximum Likelihood and SVM algorithms reached 

similarly high accuracies in most cases (Figure 8 and 9), still SVM seem to be less prone to the 

distortion artefacts of orthomosaic. Including surface roughness derived from DSM of UAV 

origin helped in discriminating forests from arable fields since BL was sometimes misclassified 

as arable land; still it did not improve discrimination of BL and other tree species with similar 

surface heterogeneity values.  

 The spectral signatures derived from training classes at site 1 were applied to the 

classification of site 2 with moderate agreement of 73/81% PA/UA and 0.66 conditional Kappa 

(for Maximum Likelihood algorithm; SVM gave very poor results). Due to the differences in 

spectral sensitivities of sensors the signatures could not be transferred between UAV and satellite 

data. Also the class signatures incorporating the surface roughness did not give satisfactory 

results if applied from one site to the other.  



21 

 

 The UAV flight campaign in 2015 was organized to capture BL in flower, however since 

the trees did not flower simultaneously even at the same site, only several trees were actually 

flowering on the orthomosaic (visible in white on Figure 9, uppermost part). Nevertheless this 

fact did not deteriorate the detection results, probably thanks to good separability from other tree 

species in NIR part of the spectrum based on leave and not only flower signatures (Figure 10). 

 

 

Figure 8. Classification accuracies of different data origin (UAV imagery of site 1 – S1 – and site 

2 – S2, and WorldView 2 imagery – WV) and classification algorithms (‘ML’ = Maximum 

Likelihood, ‘SVM’ = Support Vector Machines, ‘+’ = DSM roughness included, ‘transf’ = 

algorithm transformed from the site 1).  
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Figure 9. Classification of UAV site 1 and 2 (upper and middle rows, respectively), and WV-2 

satellite imagery (lower row). False color composites of the original imagery (NIR-G-B, left 

column), and results of Maximum Likelihood classification (central column), and Support Vector 

Machines (right column) are shown. Legend - BL yellow, BL flowering red, other tree species 

green, non-forest light brown, shadows grey, and roads black. 
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Figure 10. Separability of classes (BL – red, other tree species – green) shown on the scatterplot 

of Green (Band_3) and NIR 1 (Band_7) bands of WV-2 satellite. 

 

4. Discussion 

An important step in application of UAV approach in invasive monitoring seem to be generation 

of precise combined RGB + NIR orthomosaic from UAV images acquired during the flight 

campaign. This is because the NIR part of the spectrum is very important for the plant 

recognition as demonstrated here on case of black locust. For further processing such as 

classification and validation, it is important to achieve high precision in both co-registration of 

the channels and geolocation of the imagery. The target accuracy should therefore meet the 

condition of possible inter-comparison with other EO sources as satellite imagery or repeated 

acquisition to avoid possible mis-matches within the given target resolution for change 

monitoring.  

In our research, we replaced an initial setup of separate RGB and NIR acquisition by 

continuous imaging of both spectra on the newer unmanned platform VUT 713. Since the image 

quality and positional accuracy were still not satisfactory, further adaptations were introduced to 

improve the overall quality. A DGPS module was added to the autopilot setup to increase 
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positional accuracy of camera stations. RAW GPS data stored in the autopilot log served as an 

input into the automated geotagging workflow along with CZEPOS correction data, ionosphere 

map and shutter lag correction. This approach belongs to the Post-Processed Kinematics (PPK) 

class of methods being currently employed by a growing number of commercial and academic 

bodies (Kais et al. 2005). Compared to the Real-Time Kinematics approach it is more robust, not 

relying on the datalink between rover and base stations. It also features lower cost due to less 

hardware required. The overall aim of the developed geotagging workflow is to eliminate 

laborious GCP collection and measurements for operational service. The distribution of reference 

GCPs may be limited by site disposition, e.g. continuous tree cover may restraint the selection 

excluding the central forested part of the site. 

The tests of different settings of DSM generation proved the advantage of our concept of 

DSM resampling to eliminate various defects caused by highly detailed DSM. Such procedure 

expelled most of the artefacts and thus reduced subsequent classification errors. Still further 

evaluation of parametrization during the data processing is needed to comprehensively evaluate 

the influence of partial processing steps on final imagery used for classification. Co-processing of 

both RGB and NIR imagery results in lower spatial accuracy than RGB orthomosaic alone and 

extend the time needed for its processing. However as demonstrated here, the NIR data are 

indispensable for BL classification and proper co-registration with RGB data is more important 

than the temporal co-registration. 

Accuracy of invasive BL detection from UAV orthomosaics was very high, although values 

of acceptable classification accuracy presented in the literature differ considerably, ranging from 

70% (Pringle et al. 2009) to 85% for PA and UA (Foody 2002), and 0.61 for Kappa (Landis and 

Koch 1977). Our accuracies felt within this range, signifying good to excellent agreement. Lower 

accuracies for satellite WV-2 imagery were probably due to lower spatial resolution; still 

different timing could also play a role. This must be proved by further tests analysis UAV 

imagery acquired in different periods of the vegetation season. 

Measures of textural and spatial context can augment results of classification in case the 

spectral information is not sufficient (Wang et al. 2015), such as mixing arable land and BL 

stands (Somodi et al. 2012). Using range of elevation values instead of vegetation height derived 

by subtraction DSM to existing DTM can overcame the problem of geolocation impreciseness 

since it only defines relative differences within the defined neighbourhood. In case of abrupt 



25 

 

change in surface height, such as at the border of forest/non forest, it brought noise into the 

classification, however since in our case non forest areas at the borders with forest were shaded 

(and classified as ‘shade’), it did not influence the quality of the final results. 

The timing of the data acquisition can be crucial in plant detection, since plants are often best 

recognized during flowering time (Everitt, Escobar and Davis 2001; Müllerová et al. 2013). 

According to Somodi et al. (2012), BL is the best separable during flowering however this 

approach has following drawbacks impeding practical application: (a) BL individuals do not 

flower exactly at the same time even at the same site, and (b) the time window for flowering is 

very short (1-2 weeks) and difficult to predict (depending very much on May temperatures in 

particular year). In our study we found that if the data provide high spatial detail (UAV) and 

include NIR band, the species is separable very well even if not flowering. Importance of NIR 

band for discrimination of vegetation was reported from previous studies (Everitt et al. 2005; 

Wang et al. 2015). 

In our further research we would like to explore the potential benefits of sequence of 

orthomosaics with different timing in discriminating tree species (such as in Hill et al. 2009). For 

this approach precise georeferencing is indispensable, therefore we will continue testing the 

methodology of data pre-processing to make the workflow as simple and automatic as possible 

(reducing the manual input such as GCP collection) and robust at the same time. Reduction of 

geometric distortions on the UAV orthomosaics will enable us to test the object-based approach 

accounting for the spatial structure and context information (Blaschke 2010). This approach is 

expected to improve the results by reducing the effects of shadows, within-class spectral variation 

and mis-registration (Laliberte et al. 2012; Tewkesbury et al. 2015). 

 

5. Conclusions 

The paper presents and discusses application of low cost UAV technology in environmental 

monitoring. Our study showed that UAV data are well suitable for detection of selected invasive 

species (black locust in our case), still processing of the data (mainly creation of the orthomosaic) 

can be problematic and must be handled with care. We provide evidence that good results can be 

obtained using a low cost solution of unmanned system composed from affordable off-the-shelf 

components such as Radio Controlled (RC) airplanes and consumer cameras modified for 

RGB/NIR spectrum in case the right methodology is applied to the important steps of image 
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acquisition, pre-processing (mosaicking and georeferencing), ground-truthing and classification. 

For practical application of this novel, flexible and cheap tool in plant invasion management as 

well as other environmental actions, well proven and tested methodology is crucial, and our study 

brings insights in this area. 

 

Acknowledgements  

The research was supported by TAČR TA0402045, the Praemium Academiae award to P. Pyšek 

from the Czech Academy of Sciences, was part of long-term research development project 

No. RVO 67985939 and received funding from the MEYS under the National Sustainability 

Programme I (Project LO1202). 

 

References 

Agisoft 2016, Agisoft PhotoScan. Available online at: http://www.agisoft.com/ (last accessed 

September 25 2016).   

Batzli, J. M., Graves, W. R., and Berkum, P., 1992, Diversity among Rhizobia effective with 

Robinia pseudoacacia. Applied and Environmental Microbiology, 58 (7), pp. 2137–2143. 

Blaschke, T., 2010, Object based image analysis for remote sensing. ISPRS journal of 

photogrammetry and remote sensing, 65(1), pp. 2-16. doi: 10.1016/j.isprsjprs.2009.06.004. 

Bradley, B. A., 2014, Remote detection of invasive plants: a review of spectral, textural and 

phenological approaches. Biological invasions, 16 (7), pp. 1411-1425. doi:  

10.1007/s10530-013-0578-9. 

Buchanan, G. M., Brink, A. B., Leidner, A. K., Rose, R., and Wegmann, M., 2015, Advancing 

terrestrial conservation through remote sensing. Ecological Informatics, 30, pp. 318-321. 

doi: 10.1016/j.ecoinf.2015.05.005. 

Camps-Valls, G., and Bruzzone, L. (Eds.), 2009, Kernel methods for Remote Sensing Data 

Analysis (UK: Wiley & Sons). doi: 10.1002/9780470748992.fmatter. 

CHDK, 2013, Canon Hack Development Kit. Available online at: 

http://chdk.wikia.com/wiki/CHDK (accessed September 7 2013). 

Cierjacks, A., Kowarik, I., Joshi, J., Hempel, S., Ristow, M., von der Lippe, M., and Weber, E., 



27 

 

2013, Biological flora of the British Isles: Robinia pseudoacacia. J. Ecol., 101, pp. 1623–

1640. doi: 10.1111/1365-2745.12162. 

Colomina, I., and Molina, P., 2014, Unmanned aerial systems for photogrammetry and remote 

sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, pp. 79-97. 

doi: 10.1016/j.isprsjprs.2014.02.013. 

Congalton, R.G., and Green, K., 1999, Assessing the Accuracy of Remotely Sensed Data: 

Principles and Practices (New York: Lewis Publishers). 

Crosti, R., Agrillo, E., Ciccarese, L., Guarino, R., Paris, P., and Testi, A., 2016, Assessing 

escapes from short rotation plantations of the invasive tree species Robinia pseudoacacia L. 

in Mediterranean ecosystems: a study in central Italy. iForest-Biogeosciences and Forestry, 

743. doi: 10.3832/ifor1526-009. 

CUZK, 2015, Orthophoto of the Czech Republic 2015. Available online at: 

http://geoportal.cuzk.cz/WMS_ORTOFOTO_PUB/WMService.aspx (accessed July 25 

2016). 

Dandois, J. P., and Ellis, E. C., 2010, Remote sensing of vegetation structure using computer 

vision. Remote Sens, 2, pp. 1157–1176. doi: 10.3390/rs2041157. 

DigitalGlobe, 2016, Available online at: 

http://global.digitalglobe.com/sites/default/files/DigitalGlobe_Spectral_Response_1.pdf 

(last accessed September 25 2016). 

Dvořák, P., Müllerová, J., Bartaloš, T., and Brůna, J., 2015, Unmanned aerial vehicles for alien 

plant species detection and monitoring. Int. Arch. Photogramm. Remote Sens. Spatial Inf. 

Sci., XL-1/W4, pp. 83-90. doi: 10.5194/isprsarchives-XL-1-W4-83-2015. 

Ehrenfeld, J. G., 2010, Ecosystem consequences of biological invasions. Annual Review of 

Ecology, Evolution and Systematics, 41, pp. 59–80. doi: 10.1146/annurev-ecolsys-102209-

144650. 

European Commission, 2008, Towards an EU strategy on invasive species. COM 789 (Brussels: 

EC). 

European Commission, 2014, Regulation on the prevention and management of the introduction 

and spread of invasive alien species. COM 1143/2014 (Brussels: EC). 

http://global.digitalglobe.com/sites/default/files/DigitalGlobe_Spectral_Response_1.pdf


28 

 

Everitt, J. H., Escobar, D. E., and Davis, M. R., 2001, Reflectance and image characteristics of 

selected noxious rangeland species. J. Range Manage., 54, pp. A106–A120. doi: 

10.2307/4003193. 

Everitt, J. H., Yang, C., and Deloach, C. J.,  2005, Remote sensing of giant reed with QuickBird 

satellite imagery. Journal of Aquatic Plant Management, 43, pp. 81–85. 

Foody, G. M., 2002, Status of land cover classification accuracy assessment. Remote Sensing of 

Environment, 80, pp. 185–201. doi: 10.1016/S0034-4257(01)00295-4. 

Hantson, W., Kooistra, L., and Slim, P. A., 2012, Mapping invasive woody species in coastal 

dunes in the Netherlands: a remote sensing approach using LIDAR and high-resolution 

aerial photographs. Appl Veg Sci, 15 (4), pp. 536–547. doi: 10.1111/j.1654-

109X.2012.01194.x. 

Hamada, Y., Stow, D. A., Coulter, L. L., Jafolla, J. C., and Hendricks, L.W., 2007, Detecting 

Tamarisk species (Tamarix spp.) in riparian habitats of Southern California using high 

spatial resolution hyperspectral imagery. Remote Sensing of Environment, 109, pp. 237–

248. doi: 10.1016/j.rse.2007.01.003. 

Hill, R. A., Wilson, A. K., George, M., and Hinsley, S. A., 2009, Mapping tree species in 

temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci., 13, pp. 

86–99. doi: 10.1111/j.1654-109X.2009.01053.x. 

Huang, Ch., and Asner, G. P., 2009, Applications of remote sensing to alien invasive plant 

studies. Sensors, 9, pp. 4869–4889. doi: 10.3390/s90604869. 

Hulme, P. E., Pyšek, P., Nentwig, W., and Vilà, M., 2009. Will threat of biological invasions 

unite the European Union? Science, 324, pp.40–41. doi: 10.1126/science.1171111. 

Kais, M., Bonnifait, P., Bétaille, D., and Peyret, F., 2005, Development of loosely-coupled 

FOG/DGPS and FOG/RTK systems for ADAS and a methodology to assess their real-time 

performances. In IEEE Proceedings, Intelligent Vehicles Symposium, pp. 358-363. IEEE. 

KAP, 2015, KAP UAV Exposure Control Script. Available online at: 

http://chdk.wikia.com/wiki/KAP_UAV_Exposure_Control_Script (accessed April 12 

2015). 

van Kleunen, M., Dawson, W., Essl, F., Pergl, J., Winter, M., Weber, E.... and Pyšek, P., 2015, 

Global exchange and accumulation of non-native plants. Nature, 525, pp. 100–103. doi: 

10.1038/nature14910. 



29 

 

Kowarik, I., 1996, Funktionen klonalen Wachstums von Bäumen bei der Brachflächen-

Sukzession unter besonderer Beachtung von Robinia pseudoacacia. Verhandlungen der 

Gesellschaft für Ökologie, 26, pp. 173–181. 

Laliberte, A. S., Browning, D. M., and Rango, A., 2012, A comparison of three feature selection 

methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. 

International Journal of Applied Earth Observation and Geoinformation, 15, pp. 70-78. 

doi: 10.1016/j.jag.2011.05.011. 

Landis, J., and Koch, G., 1977, The measurement of observer agreement for categorical data. 

Biometrics, 33, pp. 159–174. 

Lawes, R. A., and Wallace, J. F., 2008, Monitoring an invasive perennial at the landscape scale 

with remote sensing. Ecological Management & Restoration, 9(1), pp. 53-59. doi: 

10.1111/j.1442-8903.2008.00387.x. 

Li, G., Xu, G., Guo, K., and Du, S., 2014, Mapping the Global Potential Geographical 

Distribution of Black Locust (Robinia Pseudoacacia L.) Using Herbarium Data and a 

Maximum Entropy Model. Forests,, 5, pp. 2773–2792. doi: 10.3390/f5112773. 

Marvin, D. C., Koh, L. P., Lynam, A. J., Wich, S., Davies, A. B., Krishnamurthy, R., Stokes, E., 

Starkey, R., and Asner, G. P., 2016, Integrating technologies for scalable ecology and 

conservation. Global Ecology and Conservation, 7, pp. 262-275. doi: 

10.1016/j.gecco.2016.07.002. 

Matus, G., Tothmeresz, B., and Papp, M., 2003, Restoration prospects of abandoned species-rich 

sandy grassland in Hungary. Applied Vegetation Science, 6 (2), pp. 169–178. doi: 

10.1111/j.1654-109X.2003.tb00577.x. 

Müllerová J., Pyšek P., Jarošík V., and Pergl, J., 2005, Aerial photographs as a tool for assessing 

the regional dynamics of the invasive plant species Heracleum mantegazzianum. Journal of 

Applied Ecology, 42, pp. 1–12. doi: 10.1111/j.1365-2664.2005.01092.x. 

Müllerová J., Pergl J., and Pyšek, P., 2013, Remote sensing as a tool for monitoring plant 

invasions: testing the effects of data resolution and image classification approach on the 

detection of a model plant species Heracleum mantegazzianum (giant hogweed). 

International Journal of Applied Earth Observation and Geoinformation, 25, pp. 55–65. 

doi: 10.1016/j.jag.2013.03.004. 



30 

 

Müllerová, J., Brůna, J., Dvořák, P., Bartaloš, T., and Vítková, M., 2016, Does the Data 

Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions. 

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLI-B7, pp. 903-908. doi: 

10.5194/isprsarchives-XLI-B7-903-2016. 

Nehring, S., Kowarik, I., Rabitsch, W., and Essl, F., 2013, Naturschutzfachliche 

Invasivitätsbewertungen für in Deutschland wild lebende gebietsfremde Gefäßpflanzen. 

Naturschutzfachliche Invasivitäts-bewertungen für in Deutschland wild lebende 

gebietsfremde Gefäßpflanzen. Bonn: Bundesamt für Naturschutz, BfN-Skripten, 352, pp. 

168–169. 

Pergl, J., Sádlo, J., Petrusek, A., Laštůvka, Z., Musil, J., Perglová, I., ... and Pyšek, P., 2016, 

Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental 

impacts and management strategy. NeoBiota, 28, pp. 1-38. doi: 10.3897/neobiota.28.4824. 

Pimentel, D., Zuniga, R., and Morrison, D., 2005, Update on the environmental and economic 

costs associated with alien-invasive species in the United States. Ecological economics, 52 

(3), pp. 273-288. doi: 10.1016/j.ecolecon.2004.10.002. 

Pluess, T., Cannon, R., Jarošík, V., Pergl, J., Pyšek, P., and Bacher, S., 2012, When are 

eradication campaigns successful? A test of common assumptions. Biological Invasions, 14, 

pp. 1365–1378. doi: 10.1007/s10530-011-0160-2. 

Pontius, R. G., and Millones, M., 2011, Death to Kappa: birth of quantity disagreement and 

allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 

32, pp. 4407–4429. 

Pringle, R. M., Syfert, M., Webb, J. K., and Shine, R., 2009, Quantifying historical changes in 

habitat availability for endangered species: use of pixel- and object-based remote sensing. 

Journal of Applied Ecology, 46, pp. 544–553. doi: 10.1111/j.1365-2664.2009.01637.x. 

Pyšek, P., and Richardson, D. M., 2010, Invasive species, environmental change and 

management, and health. Annual Review of Environment and Resources, 35, pp. 25–55. doi: 

10.1146/annurev-environ-033009-095548. 

Pyšek, P., Chytrý, M., Pergl, J., Sádlo, J., and Wild, J., 2012, Plant invasions in the Czech 

Republic: current state, introduction dynamics, invasive species and invaded 

habitats. Preslia, 84, pp. 575–629. 



31 

 

Rejmánek, M., 2000, Invasive plants: Approaches and predictions. Austral Ecology, 25, pp. 497–

506. doi: 10.1046/j.1442-9993.2000.01080.x. 

Richardson, D. M., and Rejmánek, M., 2011, Trees and shrubs as invasive alien species–a global 

review. Diversity and Distributions, 17 (5), pp. 788–809. doi: 10.1111/j.1472-

4642.2011.00782.x. 

Rocchini, D., Andreo, V., Förster, M., Garzon-Lopez, C. X., Gutierrez, A. P., Gillespie, T. W., ... 

and Marcantonio, M., 2015, Potential of remote sensing to predict species invasions A 

modelling perspective. Progress in Physical Geography, 39, pp. 283-309. doi: 

10.1177/0309133315574659. 

Somodi, I., Čarni, A., Ribeiro, D., and Podobnikar, T., 2012, Recognition of the invasive species 

Robinia pseudacacia from combined remote sensing and GIS sources. Biological 

conservation, 150, pp. 59–67.doi: 10.1016/j.biocon.2012.02.014. 

Takasu, T., 2009, RTKLIB: Open Source Program Package for RTK-GPS. FOSS4G 2009 Tokyo. 

Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A., and Fisher P. F., 2015, A critical 

synthesis of remotely sensed optical image change detection techniques. Remote Sensing of 

Environment, 160, pp. 1-14. doi: 10.1016/j.rse.2015.01.006. 

Turner, D., Lucieer, A., and Watson, C., 2012, An automated technique for generating 

georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, 

based on structure from motion (SfM) point clouds. Remote Sensing, 4 (5), pp. 1392-1410. 

doi: 10.3390/rs4051392. 

Van Miegroet, H., and Cole, D. W., 1984, The impact of nitrification on soil acidification and 

cation leaching in a red alder ecosystem. J. Environ. Qual., 13, pp. 586–590.  

Vilà, M., and Ibáñez, I., 2011, Plant invasions in the landscape. Landscape Ecology, 26, pp. 461–

472. doi: 10.1007/s10980-011-9585-3. 

Vítková, M., and Kolbek, J., 2010, Vegetation classification and synecology of Bohemian 

Robinia pseudacacia stands in a Central European context. Phytocoenologia, 40 (2–3), pp. 

205–241. doi: 10.1127/0340-269X/2010/0040-0425.  

Vítková, M., Tonika, J., and Müllerová, J., 2015, Black locust-successful invader of a wide range 

of soil conditions. Sci. Total. Environ., 505, pp. 315–328. doi: 

10.1016/j.scitotenv.2014.09.104. 

http://dx.doi.org/10.1111/j.1472-4642.2011.00782.x
http://dx.doi.org/10.1111/j.1472-4642.2011.00782.x


32 

 

Vítková, M., Müllerová, J., Sádlo, J., Pergl, J., and Pyšek, P., 2017, Black locust (Robinia 

pseudoacacia) beloved and despised: a story of an invasive tree. Forest Ecology and 

Management, 384, pp. 287-302. doi: 10.1016/j.foreco.2016.10.057 . 

Wang, H., Zhao, Y., Pu, R., and Zhang, Z., 2015, Mapping Robinia Pseudoacacia Forest Health 

Conditions by Using Combined Spectral, Spatial, and Textural Information Extracted from 

IKONOS Imagery and Random Forest Classifier. Remote Sensing, 7 (7), pp. 9020-9044. 

doi: 10.3390/rs70709020. 

Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds, J. M., 2012, 

Structure-from-motion photogrammetry: a lowcost, effective tool for geoscience 

applications. Geomorphology, 179, pp. 300–314. doi: 10.1016/j.geomorph.2012.08.021. 

Whitehead, K., and Hugenholtz, C. H., 2014, Remote sensing of the environment with small 

unmanned aircraft systems (UASs), part 1: A review of progress and challenges 1. Journal 

of Unmanned Vehicle Systems, 2(3), pp. 69-85. 

Whitehead, K., Hugenholtz, C.H., Myshak, S., Brown, O., LeClair, A., Tamminga, A., Barchyn, 

T.E., Moorman, B., and Eaton, B., 2014, Remote sensing of the environment with small 

unmanned aircraft systems (UASs), part 2: scientific and commercial applications 1. 

Journal of unmanned vehicle systems, 2 (3), pp. 86-102. 

Zweig, C. L., Burgess, M. A., Percival, H. F., Kitchens, W. M., 2015, Use of Unmanned Aircraft 

Systems to Delineate Fine-Scale Wetland Vegetation Communities. Wetlands, 35, pp. 303–

309. doi: 10.1007/s13157-014-0612-4. 

http://www.sciencedirect.com/science/journal/03781127
http://www.sciencedirect.com/science/journal/03781127

